SCHOOL OF

PHYSICS & ASTRONO

The Unix Shell
(Slides used in the workshop)

David McKain
Software Carpentry Workshop - 4% & | |t February 2020

L esson links

. Shared info to cut & paste during today’s session:

tinyurl.com/swc-feb-2020

The Unix Shell Software Carpentry lesson:
http://swcarpentry.github.io/shell-novice/

Notes & hints:

Link (2) can be accessed from (1)
Keep the above pages open in browser tabs

Il regularly sync the material - put your hand up if lost!

https://tinyurl.com/swc-2019-09-04
http://swcarpentry.github.io/shell-novice/

Welcome!

* Based on The Unix Shell Software Carpentry lesson

* Goals:
* Explain what Unix is why you’d want/need to use it
* Get experience with some of the most common Unix commands
* Get comfortable finding your way around your files on Unix systems

* Teach you enough to be able to do cool stuff (e.g. use Eddie /
supercomputers...)

* Show you that the Unix Shell is less scary than it might seem!
* Learn a bit about Unix Philosophy

Session outline

We’ll do a mix of:

Short expositional talks

Live examples

Exercises & feedback
Random nonsense

Topics

Week I:
* Introducing Unix & Shell

Navigating Files & Directories
Working with Files & Directories

Handy Unix commands
Pipes & Filters

Week 2:

* Loops & Variables

* Shell Scripts

* Finding Things

Preparation

Preparation

Open the Setup page in the lesson and:
|. Download and extract the sample data ZIP as directed

2. Make sure you can open a shell

* Mac & Linux: Use the Terminal application
* Windows: Run Git Bash

|. Introducing Unix & Shell

Introduction

Computers do 4 basic things:
* Run programs
* Store data

e Communicate with each other

e Interact with us

Interaction in the 1960s: punched cards

v innii il 1 il | . ‘

11 0 in 1 | i ' Lo ol
- 00000000000000000JO00O000000FICUOROO0OOJO00000000060000H0006300000000000000000FROfOOR

123456 78 910i11213181516 1718192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 43 44 43 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 15 74 77 /8 79 80

T ERRERRREY ER1 A1 ARRRRR!I ET ERRAREY [R RRRRRRRR R RN R R R R R R RN AR SRR R RN ERRERRRRERR R
2902229223222222232

333333333333333333333333333333333[333]3
4040844444400444484444444444404444444J40440444444044444444444044484400044)444]44
5555555555555 5555555055555 @550555
66666666NG6W66C6666666665666666666
SEEERT SRR ERERARE] FEREEEARERERRRER L] FRRRREERRERERARERRRREREERRERRARERT T FREES.
8888888688 MelscleclesgeolesEos o oo ossss888858888888388888888388888888838838

95999990909999999999999999900999339999

8 9101 *2 13141516 i7 18 19 20 21 2223 24 25 26 27 28 22 20 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 K0 61 62 63 64 65 66 67 68 63 70 71 72 73 74 1576 77 78 79 80 J
BM UNITED KINGDOM LIMITED 5n81

|970s: Command Line Interfaces (CLI)
7 :;J, |

| 980s: Graphical User Interfaces (GUI)

= : g A . " &% File Edit View Special

\ t
l .
— Part # : 101700
; Description : UHS Uideo Recorder Mac SySte"_l S(_)ﬂware -
Buentlty : 746 3 items 227K in disk 173K available
= HS D] rice : 399.60
File Uiew Special
e C:CD \WINDOUS +
CALC.EXE CLOCK.EXE EDL.ING & b System Folder Empty Folder A
CALENDAR.EXE CONTROL.EXE EDL1.BAT = -4 =
CARDFILE.EXE COUR.EXE EDL2.BAT Bitnap QL7120 free henory || — system Foller —————"———
CLIPBRD.EXE DOTHIS.TXT EEDESIGN] 200 m| p———— pe—————
- - -
= 0S0) pla 15@ — I - L
't nie = E] E E] E
1 Unit Cost of Goods I Cost 100 . ._ ._ ._ ._
%]3%2 $¥%% 28 clite E {11737 1] peiiisiimmasnnmanannne: n Imagewriter Note Pad File Scrapbook File Clipboard File
g s I =
61989 120.08 |4 fear 4 D
- - £ -» U Lt .-l..
I
= — 3 £ 1>k I
Trash
Speie i
Cieck i, AT ojE o
1 2
I-') 1
- 2%
1>

CLI vs GUI

* Graphical interfaces:
* Easier to pick up at first
* But can become limiting & repetitive

e Command line interfaces:

* Harder to learn at first
* But becomes very efficient & versatile

* Command line interfaces haven’t been killed by GUI!

What is Unix?

* A family of Operating Systems (c.f. Windows)
* Originally developed in the 1970s
* Historically:

* Operating Systems for big and expensive computers...
e ...usually used by lots of different people at once

* Modern Unix systems:

* Still big computers, e.g. Eddie, most supercomputers.
* But also Apple Mac, Linux computers, Android phones (sort of)

What is Unix?

* Unix philosophy:
* Modular design
* Lots of small tools doing "one job and doing it wel

I”

* Joining things up (pipelining)
* The importance of textual data

* Choice - lots of ways to do the same thing

* Unix is fun?!
* Terse & cryptic commands
* Terrible humour
* Religious wars
* Whimsical/scary error messages

Religious wars...

& "
=M

A TE e

lovely Unix error messages

./a.out
Rating
062
Segmentation Fault (core d
-bash-3.005 | $./buserror
Bus error (core dumped)

s

dmckain@login03:~ (ssh)

Fle Modifica Visualizza Terminale Schede Ajuto
117:44:35]
You don't exist, go away!
\gboccardizaccaria‘pts3|

20/06/06

What is the Unix Shell?

* The Unix Shell is a CLI for communicating with Unix systems

* (Unix systems do also have GUIs)

* Actually there are lots of different shells available for Unix!

* The shell we'll be learning is called bash (Bourne Again Shell... ha!)
* Bash tends to be the default shell on most Unix systems

* Some people prefer to use other shells...

Why learn/use the Unix Shell?

* Lets you interact with pretty much any Unix system in a uniform way
* Helps make stuff portable

» Sometimes it's the only way you can interact with a Unix system!

* Pretty much essential for using a supercomputer

Why learn/use the Unix Shell?

* As a researcher, knowing a bit of shell can help
with:
* Getting your data & code from A to B
* Checking & reporting on your data
* Basic data wrangling

* Learning how to write scripts can:

* Allow you to automate, record and document tasks
that might be complex, repetitive, error prone etc.

* Join disparate processes together

How do we communicate using a shell?

* Shell provides a read — evaluate — print (REPL) loop.

* We say what we want to do by typing in commands.

* Commands typically run programs installed on the system
* Though sometimes they're special "builtin" commands provided by the shell

itself
* It's also possible to create your own commands

* Analogy: some similarities with issuing commands in English...

English analogy: Donald Trump’s TODO list

* Bomb hurricane

* Drink covfefe noisily

* Eat hamburgers

* Try to buy Greenland

* Verbs say what you're doing
* Nouns say what/who is involved

* Adverbs provide additional information

How do we communicate using a shell?

* Shell commands are kind of similar to English

* But:
* They need to be written precisely
* They use funny symbols... making things harder to read
* Commands are often cryptic / obscure / silly
* WE'll see lots of examples today!

* We can record a series of commands together as a script

2. Navigating Files & Directories

Objectives

* Learn about Files & Directories

* Understand hierarchical (tree) file systems
* Understand absolute & relative paths

* Learn how to navigate the filesystem

* Learn some handy shortcuts

Key ideas

* Files contain information/data

* Directories are special files that contain
other files and/or directories
* Often called Folders, e.g. in Windows

* This makes a hierarchical (tree) structure bin
called a filesystem

* Unix systems have a single root at the top of
the tree
* Windows has multiple roots, one for each drive

data

Users

tmp

——

imhotep

larry

nelle

Key ideas

* Unix has concept of your Present Working Directory (PWD)
* This is the directory you are “in” at any giving time
* You usually start in your special home directory
* You can move around the filesystem by changing your PWD

* File paths tell you where a file lives in the filesystem
* An absolute path shows how to get to a file by starting from the root

* A relative path shows how to get to a file by starting from a chosen
directory

* In Unix we make a file path by joining the names of each
intermediate file or directory with a‘/’ character

Key Unix commands for navigating

* pwd (present working directory) — where am |?
* cd (change directory) — navigate to specified directory
* Is (list) — see what’s in the present or specified directory

Got lost?
* Type cd on its own to take you home!

Special navigation shortcuts

Shortcut | What it means

current directory
parent directory (i.e. up one)
/ root directory (the top of the tree)

~ your home (default) directory

Handy keyboard shortcuts

* Up and Down arrow keys to access typing history
* Left and Right arrow keys to move within current line
* Tab completion to fill in names of commands / files etc.

Getting out of things

I r o
y *
——————————
Just memorize these fourteen contextually dependant instructions

* Ctrl-C:interrupts most commands

° (: quits some interactive commands (e.g. less)

Found yourself in vim and can’t get out!?!

* Press Escape key

Exiting Vim

* Then press Return Eventually

O RLY? @ThePracticalDev

* Then type :q!

3.Working with Files &
Directories

Objectives

Learn how to...

* Create new directories and files

* Pick good names for new directories & files
* Edit text files

* Delete files & directories

* Rename, move and copy files

Creating a new directory

mkdir DIRNAME

Creating a new file

* Can use a text editor to create a new text file
* Lesson uses a simple text editor called nano for this
* Other common text editors are vi(m) and emacs

* Can also create an empty file using the touch command

Good naming for files & directories

* Try to stick to combinations of
* Alphabetic letters (a-z,A-Z)
* Numbers (0-9)
* Dot (.), Underscore (), Hyphen (-)

* Avoid starting names with hyphens
* That’s because options usually start with hyphens... confusion!

* Avoid using spaces in file names

* Avoid exotic letters, symbols and emojis!

Copying, moving or renaming things

* Copy:
cp SOURCE DESTINATION

e Rename or move:
mv SOURCE DESTINATION

Deleting files & directories

*rm FILENAME

* Beware! Deleting is forever!

* Risky usage:
* rm -r deletes directory and all of its contents
* rm -rf forceful version of the above

* Safer usage:
* rm -i asks for confirmation
* rm -ir safe recursive deletion
* rmdir deletes a directory, but only if it’s empty

Wildcards

* Wildcards allow you to specify multiple files/dirs whose names
contain (match) patterns of your choice.

* Key wildcards
* * - matches any (zero or more) number of characters
* ? — matches one character
* [...] — matches any of the characters inside the square brackets

Wildcards & regular expressions

3"2: Some handy Unix commands

Outputting

* echo — outputs a message

Peeking into files

* cat — concatenate, i.e. show file contents

* more — show file contents one page at a time
* less — better version of more... ho ho ho!

* head — show first few lines of file

* tail — show bottom few lines of files

* wc — word count... also line & character count

Extracting and reformatting data in files

These are all great for manipulating text files:

 head & tail
* sort — sorts file contents

* uniq — removes duplicates
* sort & uniq can be combined to extract unique values or do grouping

* cut — picks out columns from tabular data

* grep — search file contents (covered in Chapter 7)

* More advanced: sed & awk

* Even more advanced: write some code (e.g. in Python)

4. Pipes & Filters

Objectives

* Learn some handy Unix commands

* Learn how to redirect (save) a command’s output to a file

* Learn how to chain commands together into a pipeline
* Construct some basic pipelines and solve problems using them

* Explore Unix’s Lego brick philosophy

Redirecting output & making pipes

* command > file
Redirects a command’s output to a file
Overwrites any existing content!

* command >> file
Appends a command’s output to a file

* first | second
Creates a pipeline: the output of the first command is used as the

input to the second.

Redirecting output & making pipes

$ wec -1 *. pdb

Output in Shell

$ we -1 * pdb > lengths

h

lengths

Output in File

$ wec -1 * pdb | sort -n | head -n 1

$
wc -1 *.pdb our IN sort -n our » n head -n 1 our

Qutput in Shell

5. Loops

Motivation & objectives

Motivation:

* Sometimes you need to apply the same set of commands to a bunch of files
* Manually handling each file is tedious and error prone!

* Loops provide a nice solution to this
* Loops come up in other computing contexts too so good reusable skill!

Obijectives:

* Learn how to write loops in the Unix shell

* Understand the basics about variables

* Demonstrate how to see what commands you’ve recently executed
* Learn more handy keyboard shortcuts

6. Shell Scripts

Motivation & objectives

Learn how to ’record” or automate processes that you want to do
over and over again

* This will save you time in the long run
* Reduces risk of making errors

* You can document what your script is doing... handy when you read it
later!

* You can build up a personal library of useful scripts
* Scripts are used to submit jobs to Eddie and other supercomputers

/. Finding Things

Objectives

* Learn

* Learn

* Learn

now to use grep to find content within files

how to use find to search for files

now to combine grep & find for more complex searching

Grep exercise

* Go back to the creatures directory

e Remember how we earlier extracted the CLASSIFICATION line from
one of these files!?
* E.g. head -n 2 basilisk.dat | tail -n |

* Can you use grep to do the same thing?

Searching for chemical elements

|. Go to the top of data-shell

2. Write a command to find all *.pdb files
These all represent various chemical compounds

3. Pick one file and look at it using the less command

4. Note the ATOM lines - the 3™ column is a chemical element
present in the compound

5. Can you write a command to find all *.pdb files for elements
containing Chlorine (CI)?

Try to make your command as reliable as you can!

Possible decent solution
grep -wi Cl $(find . -name “*.pdb”) | grep ATOM
* Using grep -i as some files say CL but others say Cl

* grepping ATOM ensures we're only looking at the ATOM lines

* This lists more than just the matching file names though.

Wildcards & regular expressions

