
The Unix Shell
(Slides used in the workshop)

David McKain
Software Carpentry Workshop - 4th & 11th February 2020

Lesson links

Please keep open in your web browser:
1. Shared info to cut & paste during today’s session:

tinyurl.com/swc-feb-2020
2. The Unix Shell Software Carpentry lesson:

http://swcarpentry.github.io/shell-novice/

Notes & hints:
• Link (2) can be accessed from (1)
• Keep the above pages open in browser tabs
• I’ll regularly sync the material - put your hand up if lost!

https://tinyurl.com/swc-2019-09-04
http://swcarpentry.github.io/shell-novice/

Welcome!

• Based on The Unix Shell Software Carpentry lesson
• Goals:
• Explain what Unix is why you’d want/need to use it
• Get experience with some of the most common Unix commands
• Get comfortable finding your way around your files on Unix systems
• Teach you enough to be able to do cool stuff (e.g. use Eddie /

supercomputers...)
• Show you that the Unix Shell is less scary than it might seem!
• Learn a bit about Unix Philosophy

Session outline

We’ll do a mix of:

• Short expositional talks
• Live examples
• Exercises & feedback
• Random nonsense

Topics

Week 1:
• Introducing Unix & Shell
• Navigating Files & Directories
• Working with Files & Directories
• Handy Unix commands
• Pipes & Filters
Week 2:
• Loops & Variables
• Shell Scripts
• Finding Things

Preparation

Preparation

Open the Setup page in the lesson and:
1. Download and extract the sample data ZIP as directed
2. Make sure you can open a shell
• Mac & Linux: Use the Terminal application
• Windows: Run Git Bash

1. Introducing Unix & Shell

Introduction

Computers do 4 basic things:
• Run programs
• Store data
• Communicate with each other
• Interact with us

Interaction in the 1960s: punched cards

1970s: Command Line Interfaces (CLI)

1980s: Graphical User Interfaces (GUI)

CLI vs GUI

• Graphical interfaces:
• Easier to pick up at first
• But can become limiting & repetitive

• Command line interfaces:
• Harder to learn at first
• But becomes very efficient & versatile

• Command line interfaces haven’t been killed by GUI!

What is Unix?

• A family of Operating Systems (c.f. Windows)
• Originally developed in the 1970s
• Historically:
• Operating Systems for big and expensive computers...
• ...usually used by lots of different people at once

• Modern Unix systems:
• Still big computers, e.g. Eddie, most supercomputers.
• But also Apple Mac, Linux computers, Android phones (sort of)

What is Unix?

• Unix philosophy:
• Modular design
• Lots of small tools doing "one job and doing it well”
• Joining things up (pipelining)
• The importance of textual data
• Choice - lots of ways to do the same thing

• Unix is fun?!
• Terse & cryptic commands
• Terrible humour
• Religious wars
• Whimsical/scary error messages

Religious wars…

Some lovely Unix error messages

What is the Unix Shell?

• The Unix Shell is a CLI for communicating with Unix systems
• (Unix systems do also have GUIs)
• Actually there are lots of different shells available for Unix!
• The shell we'll be learning is called bash (Bourne Again Shell... ha!)
• Bash tends to be the default shell on most Unix systems
• Some people prefer to use other shells...

Why learn/use the Unix Shell?

• Lets you interact with pretty much any Unix system in a uniform way
• Helps make stuff portable

• Sometimes it's the only way you can interact with a Unix system!
• Pretty much essential for using a supercomputer

Why learn/use the Unix Shell?

• As a researcher, knowing a bit of shell can help
with:
• Getting your data & code from A to B
• Checking & reporting on your data
• Basic data wrangling

• Learning how to write scripts can:
• Allow you to automate, record and document tasks

that might be complex, repetitive, error prone etc.
• Join disparate processes together

How do we communicate using a shell?

• Shell provides a read → evaluate → print (REPL) loop.
• We say what we want to do by typing in commands.
• Commands typically run programs installed on the system
• Though sometimes they're special "builtin" commands provided by the shell

itself
• It's also possible to create your own commands

• Analogy: some similarities with issuing commands in English...

English analogy: Donald Trump’s TODO list

• Bomb hurricane
• Drink covfefe noisily
• Eat hamburgers
• Try to buy Greenland

• Verbs say what you’re doing
• Nouns say what/who is involved
• Adverbs provide additional information

How do we communicate using a shell?

• Shell commands are kind of similar to English
• But:
• They need to be written precisely
• They use funny symbols... making things harder to read
• Commands are often cryptic / obscure / silly
• We’ll see lots of examples today!

• We can record a series of commands together as a script

2. Navigating Files & Directories

Objectives

• Learn about Files & Directories
• Understand hierarchical (tree) file systems
• Understand absolute & relative paths
• Learn how to navigate the filesystem
• Learn some handy shortcuts

Key ideas

• Files contain information/data
• Directories are special files that contain

other files and/or directories
• Often called Folders, e.g. in Windows

• This makes a hierarchical (tree) structure
called a filesystem
• Unix systems have a single root at the top of

the tree
• Windows has multiple roots, one for each drive

Key ideas

• Unix has concept of your Present Working Directory (PWD)
• This is the directory you are “in” at any giving time
• You usually start in your special home directory
• You can move around the filesystem by changing your PWD

• File paths tell you where a file lives in the filesystem
• An absolute path shows how to get to a file by starting from the root
• A relative path shows how to get to a file by starting from a chosen

directory

• In Unix we make a file path by joining the names of each
intermediate file or directory with a ‘/’ character

Key Unix commands for navigating

• pwd (present working directory) – where am I?
• cd (change directory) – navigate to specified directory
• ls (list) – see what’s in the present or specified directory

Got lost?
• Type cd on its own to take you home!

Let’s do some practical examples now!

Special navigation shortcuts

Shortcut What it means

. current directory

.. parent directory (i.e. up one)

/ root directory (the top of the tree)

~ your home (default) directory

Handy keyboard shortcuts

• Up and Down arrow keys to access typing history
• Left and Right arrow keys to move within current line
• Tab completion to fill in names of commands / files etc.

Getting out of things

Try:
• Ctrl-C: interrupts most commands
• q: quits some interactive commands (e.g. less)

Found yourself in vim and can’t get out?!
• Press Escape key
• Then type :q!
• Then press Return

3. Working with Files &
Directories

Objectives

Learn how to...
• Create new directories and files
• Pick good names for new directories & files
• Edit text files
• Delete files & directories
• Rename, move and copy files

Creating a new directory

mkdir DIRNAME

Creating a new file

• Can use a text editor to create a new text file
• Lesson uses a simple text editor called nano for this
• Other common text editors are vi(m) and emacs

• Can also create an empty file using the touch command

Good naming for files & directories

• Try to stick to combinations of
• Alphabetic letters (a-z, A-Z)
• Numbers (0-9)
• Dot (.), Underscore (_), Hyphen (-)

• Avoid starting names with hyphens
• That’s because options usually start with hyphens... confusion!

• Avoid using spaces in file names
• Avoid exotic letters, symbols and emojis!

Copying, moving or renaming things

• Copy:
cp SOURCE DESTINATION
• Rename or move:

mv SOURCE DESTINATION

Deleting files & directories

• rm FILENAME
• Beware! Deleting is forever!
• Risky usage:
• rm -r deletes directory and all of its contents
• rm -rf forceful version of the above

• Safer usage:
• rm -i asks for confirmation
• rm -ir safe recursive deletion
• rmdir deletes a directory, but only if it’s empty

Wildcards

• Wildcards allow you to specify multiple files/dirs whose names
contain (match) patterns of your choice.
• Key wildcards
• * - matches any (zero or more) number of characters
• ? – matches one character
• [...] – matches any of the characters inside the square brackets

Wildcards & regular expressions

3½: Some handy Unix commands

Outputting

• echo – outputs a message

Peeking into files

• cat – concatenate, i.e. show file contents
• more – show file contents one page at a time
• less – better version of more... ho ho ho!
• head – show first few lines of file
• tail – show bottom few lines of files
• wc – word count... also line & character count

Extracting and reformatting data in files

These are all great for manipulating text files:

• head & tail
• sort – sorts file contents
• uniq – removes duplicates

• sort & uniq can be combined to extract unique values or do grouping

• cut – picks out columns from tabular data
• grep – search file contents (covered in Chapter 7)
• More advanced: sed & awk
• Even more advanced: write some code (e.g. in Python)

4. Pipes & Filters

Objectives

• Learn some handy Unix commands
• Learn how to redirect (save) a command’s output to a file
• Learn how to chain commands together into a pipeline
• Construct some basic pipelines and solve problems using them
• Explore Unix’s Lego brick philosophy

Redirecting output & making pipes

• command > file
Redirects a command’s output to a file
Overwrites any existing content!
• command >> file

Appends a command’s output to a file
• first | second

Creates a pipeline: the output of the first command is used as the
input to the second.

Redirecting output & making pipes

5. Loops

Motivation & objectives

Motivation:
• Sometimes you need to apply the same set of commands to a bunch of files

• Manually handling each file is tedious and error prone!
• Loops provide a nice solution to this

• Loops come up in other computing contexts too so good reusable skill!

Objectives:
• Learn how to write loops in the Unix shell
• Understand the basics about variables
• Demonstrate how to see what commands you’ve recently executed
• Learn more handy keyboard shortcuts

6. Shell Scripts

Motivation & objectives

Learn how to ”record” or automate processes that you want to do
over and over again
• This will save you time in the long run
• Reduces risk of making errors
• You can document what your script is doing... handy when you read it

later!
• You can build up a personal library of useful scripts
• Scripts are used to submit jobs to Eddie and other supercomputers

7. Finding Things

Objectives

• Learn how to use grep to find content within files
• Learn how to use find to search for files
• Learn how to combine grep & find for more complex searching

Grep exercise

• Go back to the creatures directory
• Remember how we earlier extracted the CLASSIFICATION line from

one of these files?
• E.g. head -n 2 basilisk.dat | tail -n 1

• Can you use grep to do the same thing?

Searching for chemical elements

1. Go to the top of data-shell
2. Write a command to find all *.pdb files

These all represent various chemical compounds
3. Pick one file and look at it using the less command
4. Note the ATOM lines - the 3rd column is a chemical element

present in the compound
5. Can you write a command to find all *.pdb files for elements

containing Chlorine (Cl)?

Try to make your command as reliable as you can!

Possible decent solution

grep -wi Cl $(find . -name “*.pdb”) | grep ATOM

• Using grep -i as some files say CL but others say Cl
• grepping ATOM ensures we’re only looking at the ATOM lines
• This lists more than just the matching file names though.

Wildcards & regular expressions

