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L esson links

. Shared info to cut & paste during today’s session:

tinyurl.com/swc-feb-2020

The Unix Shell Software Carpentry lesson:
http://swcarpentry.github.io/shell-novice/

Notes & hints:

Link (2) can be accessed from (1)
Keep the above pages open in browser tabs

Il regularly sync the material - put your hand up if lost!


https://tinyurl.com/swc-2019-09-04
http://swcarpentry.github.io/shell-novice/

Welcome!

* Based on The Unix Shell Software Carpentry lesson

* Goals:
* Explain what Unix is why you’d want/need to use it
* Get experience with some of the most common Unix commands
* Get comfortable finding your way around your files on Unix systems

* Teach you enough to be able to do cool stuff (e.g. use Eddie /
supercomputers...)

* Show you that the Unix Shell is less scary than it might seem!
* Learn a bit about Unix Philosophy



Session outline

We’ll do a mix of:

Short expositional talks

Live examples

Exercises & feedback
Random nonsense

Topics

Week I:
* Introducing Unix & Shell

Navigating Files & Directories
Working with Files & Directories

Handy Unix commands
Pipes & Filters

Week 2:

* Loops & Variables

* Shell Scripts

* Finding Things



Preparation



Preparation

Open the Setup page in the lesson and:
|. Download and extract the sample data ZIP as directed

2. Make sure you can open a shell

* Mac & Linux: Use the Terminal application
* Windows: Run Git Bash



|. Introducing Unix & Shell



Introduction

Computers do 4 basic things:
* Run programs
* Store data

e Communicate with each other

e Interact with us



Interaction in the 1960s: punched cards
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|970s: Command Line Interfaces (CLI)
7 :;J, |




| 980s: Graphical User Interfaces (GUI)

= : g A . " &% File Edit View Special

\ t
l .
— Part # : 101700
; Description : UHS Uideo Recorder Mac SySte"_l S(_)ﬂware -
Buentlty : 746 3 items 227K in disk 173K available
= HS D] rice : 399.60
File Uiew Special
e C:CD \WINDOUS +
CALC.EXE CLOCK.EXE EDL.ING & b System Folder  Empty Folder A
CALENDAR.EXE CONTROL.EXE EDL1.BAT = -4 =
CARDFILE.EXE COUR.EXE EDL2.BAT Bitnap QL7120 free henory || — system Foller —————"———
CLIPBRD.EXE  DOTHIS.TXT EEDESIGN] 200 m| p———— pe—————
- - -
= 0S0 ) pla 15@ — I - L
't nie = E] E E] E
1 Unit Cost of Goods I Cost 100 . ._ ._ ._ ._
% ]3%2 $¥%% 28 clite E {11737 1] peiiisiimmasnnmanannne: n Imagewriter Note Pad File Scrapbook File Clipboard File
g s I =
61989 120.08 |4 fear 4 D
- - £ -» U Lt .-l..
I
= — 3 £ 1>k I
Trash
Speie i
Cieck i, AT ojE o
1 2
I-' ) 1
- 2%
1>




CLI vs GUI

* Graphical interfaces:
* Easier to pick up at first
* But can become limiting & repetitive

e Command line interfaces:

* Harder to learn at first
* But becomes very efficient & versatile

* Command line interfaces haven’t been killed by GUI!



What is Unix?

* A family of Operating Systems (c.f. Windows)
* Originally developed in the 1970s
* Historically:

* Operating Systems for big and expensive computers...
e ...usually used by lots of different people at once

* Modern Unix systems:

* Still big computers, e.g. Eddie, most supercomputers.
* But also Apple Mac, Linux computers, Android phones (sort of)



What is Unix?

* Unix philosophy:
* Modular design
* Lots of small tools doing "one job and doing it wel

I”

* Joining things up (pipelining)
* The importance of textual data

* Choice - lots of ways to do the same thing

* Unix is fun?!
* Terse & cryptic commands
* Terrible humour
* Religious wars
* Whimsical/scary error messages



Religious wars...
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lovely Unix error messages

./a.out
Rating
062
Segmentation Fault (core d
-bash-3.005 | $ ./buserror
Bus error (core dumped)

s

dmckain@login03:~ (ssh)

Fle Modifica Visualizza Terminale Schede Ajuto
117:44:35]
You don't exist, go away!
\gboccardizaccaria‘pts3|

20/06/06




What is the Unix Shell?

* The Unix Shell is a CLI for communicating with Unix systems

* (Unix systems do also have GUIs)

* Actually there are lots of different shells available for Unix!

* The shell we'll be learning is called bash (Bourne Again Shell... ha!)
* Bash tends to be the default shell on most Unix systems

* Some people prefer to use other shells...



Why learn/use the Unix Shell?

* Lets you interact with pretty much any Unix system in a uniform way
* Helps make stuff portable

» Sometimes it's the only way you can interact with a Unix system!

* Pretty much essential for using a supercomputer



Why learn/use the Unix Shell?

* As a researcher, knowing a bit of shell can help
with:
* Getting your data & code from A to B
* Checking & reporting on your data
* Basic data wrangling

* Learning how to write scripts can:

* Allow you to automate, record and document tasks
that might be complex, repetitive, error prone etc.

* Join disparate processes together




How do we communicate using a shell?

* Shell provides a read — evaluate — print (REPL) loop.

* We say what we want to do by typing in commands.

* Commands typically run programs installed on the system
* Though sometimes they're special "builtin" commands provided by the shell

itself
* It's also possible to create your own commands

* Analogy: some similarities with issuing commands in English...



English analogy: Donald Trump’s TODO list

* Bomb hurricane

* Drink covfefe noisily

* Eat hamburgers

* Try to buy Greenland

* Verbs say what you're doing
* Nouns say what/who is involved

* Adverbs provide additional information



How do we communicate using a shell?

* Shell commands are kind of similar to English

* But:
* They need to be written precisely
* They use funny symbols... making things harder to read
* Commands are often cryptic / obscure / silly
* WE'll see lots of examples today!

* We can record a series of commands together as a script



2. Navigating Files & Directories



Objectives

* Learn about Files & Directories

* Understand hierarchical (tree) file systems
* Understand absolute & relative paths

* Learn how to navigate the filesystem

* Learn some handy shortcuts



Key ideas

* Files contain information/data

* Directories are special files that contain
other files and/or directories
* Often called Folders, e.g. in Windows

* This makes a hierarchical (tree) structure bin
called a filesystem

* Unix systems have a single root at the top of
the tree
* Windows has multiple roots, one for each drive

data

Users

tmp

——

imhotep

larry

nelle



Key ideas

* Unix has concept of your Present Working Directory (PWD)
* This is the directory you are “in” at any giving time
* You usually start in your special home directory
* You can move around the filesystem by changing your PWD

* File paths tell you where a file lives in the filesystem
* An absolute path shows how to get to a file by starting from the root

* A relative path shows how to get to a file by starting from a chosen
directory

* In Unix we make a file path by joining the names of each
intermediate file or directory with a‘/’ character



Key Unix commands for navigating

* pwd (present working directory) — where am |?
* cd (change directory) — navigate to specified directory
* Is (list) — see what’s in the present or specified directory

Got lost?
* Type cd on its own to take you home!



Special navigation shortcuts

Shortcut | What it means

current directory
parent directory (i.e. up one)
/ root directory (the top of the tree)

~ your home (default) directory



Handy keyboard shortcuts

* Up and Down arrow keys to access typing history
* Left and Right arrow keys to move within current line
* Tab completion to fill in names of commands / files etc.



Getting out of things

I r o
y *
——————————
Just memorize these fourteen contextually dependant instructions

* Ctrl-C:interrupts most commands

° (: quits some interactive commands (e.g. less)

Found yourself in vim and can’t get out!?!

* Press Escape key

Exiting Vim

* Then press Return Eventually

O RLY? @ThePracticalDev

* Then type :q!




3.Working with Files &
Directories



Objectives

Learn how to...

* Create new directories and files

* Pick good names for new directories & files
* Edit text files

* Delete files & directories

* Rename, move and copy files



Creating a new directory

mkdir DIRNAME



Creating a new file

* Can use a text editor to create a new text file
* Lesson uses a simple text editor called nano for this
* Other common text editors are vi(m) and emacs

* Can also create an empty file using the touch command



Good naming for files & directories

* Try to stick to combinations of
* Alphabetic letters (a-z,A-Z)
* Numbers (0-9)
* Dot (.), Underscore (), Hyphen (-)

* Avoid starting names with hyphens
* That’s because options usually start with hyphens... confusion!

* Avoid using spaces in file names

* Avoid exotic letters, symbols and emojis!



Copying, moving or renaming things

* Copy:
cp SOURCE DESTINATION

e Rename or move:
mv SOURCE DESTINATION



Deleting files & directories

*rm FILENAME

* Beware! Deleting is forever!

* Risky usage:
* rm -r deletes directory and all of its contents
* rm -rf forceful version of the above

* Safer usage:
* rm -i  asks for confirmation
* rm -ir safe recursive deletion
* rmdir deletes a directory, but only if it’s empty



Wildcards

* Wildcards allow you to specify multiple files/dirs whose names
contain (match) patterns of your choice.

* Key wildcards
* * - matches any (zero or more) number of characters
* ? — matches one character
* [...] — matches any of the characters inside the square brackets



Wildcards & regular expressions




3"2: Some handy Unix commands



Outputting

* echo — outputs a message



Peeking into files

* cat — concatenate, i.e. show file contents

* more — show file contents one page at a time
* less — better version of more... ho ho ho!

* head — show first few lines of file

* tail — show bottom few lines of files

* wc — word count... also line & character count



Extracting and reformatting data in files

These are all great for manipulating text files:

 head & tail
* sort — sorts file contents

* uniq — removes duplicates
* sort & uniq can be combined to extract unique values or do grouping

* cut — picks out columns from tabular data

* grep — search file contents (covered in Chapter 7)

* More advanced: sed & awk

* Even more advanced: write some code (e.g. in Python)



4. Pipes & Filters



Objectives

* Learn some handy Unix commands

* Learn how to redirect (save) a command’s output to a file

* Learn how to chain commands together into a pipeline
* Construct some basic pipelines and solve problems using them

* Explore Unix’s Lego brick philosophy



Redirecting output & making pipes

* command > file
Redirects a command’s output to a file
Overwrites any existing content!

* command >> file
Appends a command’s output to a file

* first | second
Creates a pipeline: the output of the first command is used as the

input to the second.



Redirecting output & making pipes

$ wec -1 *. pdb

Output in Shell

$ we -1 * pdb > lengths

h

lengths

Output in File

$ wec -1 * pdb | sort -n | head -n 1

$
wc -1 *.pdb our IN sort -n our » n head -n 1 our

Qutput in Shell



5. Loops



Motivation & objectives

Motivation:

* Sometimes you need to apply the same set of commands to a bunch of files
* Manually handling each file is tedious and error prone!

* Loops provide a nice solution to this
* Loops come up in other computing contexts too so good reusable skill!

Obijectives:

* Learn how to write loops in the Unix shell

* Understand the basics about variables

* Demonstrate how to see what commands you’ve recently executed
* Learn more handy keyboard shortcuts



6. Shell Scripts



Motivation & objectives

Learn how to ’record” or automate processes that you want to do
over and over again

* This will save you time in the long run
* Reduces risk of making errors

* You can document what your script is doing... handy when you read it
later!

* You can build up a personal library of useful scripts
* Scripts are used to submit jobs to Eddie and other supercomputers



/. Finding Things



Objectives

* Learn

* Learn

* Learn

now to use grep to find content within files

how to use find to search for files

now to combine grep & find for more complex searching



Grep exercise

* Go back to the creatures directory

e Remember how we earlier extracted the CLASSIFICATION line from
one of these files!?
* E.g. head -n 2 basilisk.dat | tail -n |

* Can you use grep to do the same thing?



Searching for chemical elements

|. Go to the top of data-shell

2. Write a command to find all *.pdb files
These all represent various chemical compounds

3. Pick one file and look at it using the less command

4. Note the ATOM lines - the 3™ column is a chemical element
present in the compound

5. Can you write a command to find all *.pdb files for elements
containing Chlorine (CI)?

Try to make your command as reliable as you can!



Possible decent solution
grep -wi Cl $(find . -name “*.pdb”) | grep ATOM
* Using grep -i as some files say CL but others say Cl

* grepping ATOM ensures we're only looking at the ATOM lines

* This lists more than just the matching file names though.



Wildcards & regular expressions




